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Abstract

Fluidelastic systems are often lightly damped and exhibit weak nonlinear damping. The weak linear and nonlinear

damping forces have a significant effect on the long-term behaviour of the system. However, parameter identification

methods tend to concentrate on identifying the strongest forces. In this paper the applicability of two identification

methods to a single degree of freedom fluidelastic system is investigated using experimental data. The system is weakly

nonlinear under flow conditions and is prone to fluidelastic instability (i.e. self-excited limit cycle behaviour). The crucial

effect of the weak damping forces on the system stability and post-stable behaviour has been demonstrated. The

nonlinearity detection and identification has been done using an analytic representation of the displacement signal

(FREEVIB method) and subsequently a nonlinear decrement method was used for comparison. The identified models were

used to predict the global behaviour of the system in the form of limit cycle amplitudes and this has been used as an

indication of accuracy. It was found that the nonlinear decrement method yields superior predictions, but it suffers from

the limitation that the functional form of the system must be known a priori. Therefore, it is concluded that employing

both methods together provides a more powerful approach for parameter estimation in a lightly damped system where

weak nonlinear damping plays an important role.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of nonlinear parameters in a lightly damped system is not common in the literature. For
example, a recent comprehensive review of identification strategies [1] primarily cites studies concerned with
systems exhibiting relatively strong nonlinearities. The underlying assumption in many of these approaches is
that a weak force does not contribute significantly to the overall system dynamics. Indeed, some of the
methods simply cannot identify weak nonlinear forces due to issues related to poor signal-to-noise ratio
(e.g. the reverse path method [2]). However, for some lightly damped systems, the weak linear and nonlinear
damping forces determine the long term behaviour of the system. Fluidelastic systems are a case in point [3,4].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Heat exchanger tube arrays are a particular example of this type of fluidelastic system. In this case even a
single flexible tube in an otherwise rigid tube array subject to the cross flow of air may experience fluidelastic
instability, which is characterized by a rapid increase in vibration amplitude as the flow velocity is increased.
These systems have been extensively investigated experimentally. The physical mechanisms have been
classified previously by Chen [5]. For a single flexible tube, the mechanism is referred to as a fluid damping
controlled instability. The tube motion with a limit cycle oscillation (LCO) can be observed at post-stable flow
velocities and thus a nonlinear model of the coupled fluid–structure system is necessary. The important issue is
that the coupled fluid–structure system is very lightly damped and weakly nonlinear, but it is these weak
damping forces which determine both the onset of instability and the post-stable limit cycle amplitude.

Several authors have presented theoretical or semi-empirical nonlinear models. Price and Valerio [6] have
proposed a model with a strong nonlinearity in the fluid stiffness without any comparison to the experimental
data. Rzentkowski and Lever [7,8] have extended the linear model from original work by Lever and Weaver [9]
and they obtained some limited agreement with the test data. The empirical nonlinear model of a single flexible
tube in an otherwise rigid tube array subject to cross flow has been given by Meskell and Fitzpatrick [10]. The
parameters of this fluidelastic system have been estimated from the free decay tests using Force State Mapping
technique [11,12], which processes displacement, velocity and acceleration signals acquired independently. The
level of the structural damping of the system was set high enough to avoid the fluidelastic instability and the
post-stable behaviour has been predicted for lower levels of the structural damping. However, while good
predictions of the onset of the limit cycle behaviour (i.e. critical flow velocity) was obtained, the LCO
amplitude was systematically overestimated by more than 100%. This large error was due specifically to an
associated error in the nonlinear damping parameter value estimated and was caused by a relative phase
distortion between the response measurements [13]. In order to avoid these errors, it is desirable to use only a
single response measurement of the free response as input to the parameter identification approach.

One possible method to achieve this is the application of the analytic representation of response signal for a
sdof system as shown by Feldman [14] for mono-component free response. The method can detect the
nonlinear behaviour of the system without an assumption of functional form. The nonlinear parameters are
estimated directly in this approach. An alternative approach was proposed by Meskell [15] and is based on
consideration of the amplitude decrement between periods of the system response. However, this method
requires knowledge of the type of nonlinearity present. In this paper the decrement method has been slightly
modified to achieve more accurate results and a numerical simulation has been conducted to verify the
reliability of this enhanced method.

The overall objective of the work is to demonstrate the applicability of these two methods of nonlinear
parameter estimation to experimental data for a lightly damped system with very weak damping
nonlinearities, and hence define a robust methodology for system identification of these types of system.

2. Experimental setup

The investigated fluidelastic system is a five row normal triangular array of 38 mm diameter tubes with a
pitch ratio P=d ¼ 1:32 as shown in Fig. 1. All tubes were rigidly supported except the central one in the third
row (shaded in Fig. 1), which was mounted on a elastic support with the possibility of traverse displacement
ðyÞ only. It has been verified experimentally that this support behaves as a linear sdof system in quiescent air
for the range of displacement considered and the oscillating mass is approximately 1 kg. The structural
damping is controlled using a passive electro-magnetic damper. Thus, linear damping modification is
independent of system mass and structural stiffness. Under flow conditions the system is weakly nonlinear as
will be apparent from following sections. More details of the experimental setup can be found in Ref. [10].

Fig. 2 shows a typical fluidelastic behaviour of the tube with obvious increase in the rms of the displacement
at the critical flow velocity. This is caused by the negative linear fluidelastic damping overcoming the viscous
structural damping and hence there is a net transfer of the energy from the flow into the structure [5]. The
stability threshold has been investigated over a range of the freestream velocities from 0 to 9m/s for three
different levels of the structural damping. The logarithmic decrement d ¼ ½0:093; 0:106; 0:114� establishes the
structural damping, where d ¼ pc=O with c as a mass normalized coefficient of the structural damping and O
as a system natural frequency. At flow velocities higher than the critical flow velocity the tube motion is not
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Fig. 1. Schematic of tube array P=d ¼ 1:32 taken from Ref. [10].
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Fig. 2. RMS of tube motion at three levels of damping: n, d ¼ 0:093; �, d ¼ 0:106; ,, d ¼ 0:114 taken from Ref. [10].
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dynamically divergent as would be indicated by a purely linear system. The amplitude of the tube motion is
limited. No hysteretic behaviour of the stability threshold with the flow velocity has been observed. The drop
around a flow velocity of 9m/s is due to an acoustic resonance [10] and will not be considered here.

3. System identification

Two methods have been applied to estimate mass normalized parameters of the investigated system using
only a single response measurement. The first method based on analytic signal can detect a nonlinear
behaviour of a sdof system and identify parameters. This method is more complicated to implement and
requires digital filtering to smooth the input signal and remove extraneous noise. The second method is a
nonlinear decrement method, which is limited to lightly damped systems. For completeness both techniques
are briefly described below in Sections 3.1 and 3.3.

3.1. Method using analytic signal

An analytic representation of a real signal has wide applications in data processing. An analytic
approximation of a signal is usually associated with the Hilbert transform in the time domain. It is well known
that the Hilbert transform is related to the Fourier transform (FFT) in the frequency domain. A simple
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example can be found in Marple [16], which describes a method to create a standard discrete time analytic
signal, with the same sample rate and frequency content as the original data, by setting the second half of the
frequency spectrum to zero. A method using analytic signal for a nonlinearity detection and identification of a
sdof system in free response has been proposed by Feldman [14].

Eq. (1) defines an analytic signal Y ðtÞ in terms of a real part yðtÞ (which is the original data) and an
imaginary part ~yðtÞ computed using the Hilbert transform, H½yðtÞ� ¼ ~yðtÞ. The Hilbert transform behaves as a
90� phase shift filter

Y ðtÞ ¼ yðtÞ � ~yðtÞ. (1)

Then the real part and the imaginary part can be expressed as

yðtÞ ¼ AðtÞ cosðcðtÞÞ, (2)

~yðtÞ ¼ �iAðtÞ sinðcðtÞÞ, (3)

where AðtÞ and cðtÞ are the instantaneous amplitude and phase, respectively. The time derivates using relations

AðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðtÞ2 � ~yðtÞ2

q
and cðtÞ ¼ arctanði ~yðtÞ=yðtÞÞ can be obtained

_AðtÞ ¼
yðtÞ _yðtÞ � ~yðtÞ_~yðtÞ

AðtÞ
, ð4Þ

oðtÞ ¼ _cðtÞ ¼ i
yðtÞ_~yðtÞ � _yðtÞ ~yðtÞ

AðtÞ2
, ð5Þ

where oðtÞ is an instantaneous frequency of a real signal.
The first and second time derivatives of the analytic signal Y ðtÞ are

_Y ðtÞ ¼ Y ðtÞ
_AðtÞ

AðtÞ
þ ioðtÞ

� �
, (6)

€Y ðtÞ ¼ Y ðtÞ
€AðtÞ

AðtÞ
� oðtÞ2 þ i2

_AðtÞoðtÞ
AðtÞ

þ i _oðtÞ

" #
. (7)

Now consider the mass normalized equation of motion for a sdof system, Eq. (8), where bðtÞ and OðtÞ are the
instantaneous damping and natural frequency, respectively. The application of the Hilbert transform to this
equation will yield Eq. (9) providing that the signal yðtÞ (and its derivatives) has a high frequency content
compared the functions bðtÞ and O2ðtÞ. In essence, this requires that the damping and stiffness change slowly in
time compared to the periodic time of the data, yðtÞ:

€yþ bðtÞ _yþ O2ðtÞy ¼ 0, (8)

€~yþ bðtÞ_~yþ O2ðtÞ ~y ¼ 0. (9)

In the type of system of interest here (i.e. a weak nonlinearity in damping) bðtÞ is almost constant in time, while
_yðtÞ describes the system motion at a relatively high natural frequency. Thus, these two signals will have
non-overlapping spectra. Using the main properties of the Hilbert transform it can be shown easily that
H½bðtÞ _y� ¼ bðtÞH½ _y� ¼ bðtÞ_~y. Similar reasoning can be applied to O2ðtÞ and yðtÞ.

Subtracting of the Eqs. (8) and (9), and substituting the definition if the analytic signal Eq. (1), yields the
governing differential equation for transformed data:

€Y þ bðtÞ _Y þ O2ðtÞY ¼ 0. (10)

Substituting Eqs. (6) and (7) into Eq. (10) and separating the real and imaginary parts gives mass normalized
coefficients of damping bðtÞ and stiffness O2ðtÞ:

bðtÞ ¼ �2
_AðtÞ

AðtÞ
�
_oðtÞ
oðtÞ

, (11)
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O2ðtÞ ¼ oðtÞ2 �
€AðtÞ

AðtÞ
þ 2

_AðtÞ2

AðtÞ2
þ
_AðtÞ _oðtÞ

AðtÞoðtÞ
. (12)

The instantaneous system damping force and stiffness force, f D and f S, respectively, can be expressed as

f D ¼ bðtÞoðtÞAðtÞ, (13)

f S ¼ O2ðtÞAðtÞ. (14)

To explore a nonlinearity in the damping and stiffness characteristics of the system it is convenient to plot a
damping force f D against a velocity amplitude oðtÞAðtÞ and a stiffness force f S against a displacement
amplitude AðtÞ. As errors can be expected in both axis, a total least square approach is used to obtain estimates
of the linear and nonlinear parameters by simply fitting an appropriate function to the data.

3.2. Experimental results for method using analytic signal

The decay measurements have been conducted at a structural damping level of d ¼ 0:153, where no
instability (i.e. LCO) is observed. The response of a single flexible tube was recorded over a range of
freestream velocities from 0 to 9m/s in steps of 0.5m/s. At each flow velocity a flexible tube was given a
displacement of 11 mm and released from the rest. The tube displacement was monitored with a non-contact
capacitive displacement transducer. The free response was ensemble-averaged over 10 triggered records with a
4 s period at a sampling frequency 2048Hz to reduce the extraneous response due to the turbulent buffeting.
Note that in fluidelastic systems turbulent buffeting, which is characterized by relatively low amplitude
broadband excitation, cannot be eliminated at source and so will always corrupt the measure system response
data to some extent.

As the system under investigation is weakly nonlinear, no harmonics can be found in the measured
displacement response. A narrow band-pass digital filtering, which was suggested as a part of the applied
method [14], is required to eliminate noise away from the primary response. This is necessary to ensure
numerical differentiation of the free decay displacement yields reliable time derivations of the signal. Thus a
narrow band-pass filter has been applied to the displacement signal to get a response in the area around the
natural frequency of 6.6Hz of the first structural mode (the natural frequency of the second tranverse mode is
above 77Hz). An elliptic IIR filter of sixth order with an exact stop-band matching (pass-band ripple of
0.01 dB) and pass-band of 6–8Hz was used. The original method by Feldman also proposed a low-pass
filtering of the calculated instantaneous signals bðtÞ;O2ðtÞ;AðtÞ;oðtÞ. A third-order Chebyshev 2 IIR filter with
a cutoff frequency of 40Hz and an attenuation of 100 dB in the stopband has been applied. All filters have an
impulse response amplitude below 1� 10�5 after a time of 2 s.

In order to eliminate the effect of the initial transients of the digital filters, the reversed time sequence
displacement signal has been used for the application of the method, since a higher order nonlinearity is most
obvious at the higher amplitudes of the oscillations. In this way filter transients are displayed at lower
amplitudes. This corrupted data is discarded from the calculations. Although this step leads to better
nonlinearity detection and identification, it does mean that the filtering process is acausal. This does not
represent a major limitation, however, as parameter identification is usually executed offline.

The stiffness and damping characteristics of the fluidelastic system have been obtained using the application
of the FREEVIB method described above. At zero flow velocity the investigated system is considered to have
the linear characteristics as shown in Fig. 3 for damping and in Fig. 4 for stiffness. Strictly speaking, the
analysis showed negligible, but not zero, structural nonlinear forces (negative cubic stiffness and damping).
This can be attributed to numerical and quantization errors. As the flow velocity increased, weak
nonlinearities with cubic form appeared. The cubic form in damping at the flow velocity of 4m/s is more
visible as can be seen in Fig. 5. The softening stiffness at the same flow velocity in given in Fig. 6, it is less
apparent, but the regression analysis indicates its presence. This reflects the relative magnitude of the
structural stiffness compared to the fluidelastic stiffness. At the last investigated flow velocity of 8.5 m/s the
nonlinear cubic characteristics of the fluidelastic system are most obvious as shown for the damping in Fig. 7
and the stiffness in Fig. 8. The pure fluid effect is simply the difference between the total parameter of the
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Fig. 3. Structural damping at U ¼ 0m=s: —, experimental data; � � �, linear fitting.
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Fig. 4. Structural stiffness at U ¼ 0m=s: —, experimental data; � � �, linear fitting.
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fluidelastic system estimated at non-zero flow velocity and the structural parameter identified in the quiescent
fluid. The increasing fluidelastic frequency against the increasing flow velocity in Fig. 9 is derived only from
the positive linear fluid stiffness (Fig. 10), since an added mass can be neglected in the case of the air. The
nonlinear cubic fluid stiffness in Fig. 11 has increasing softening effect. The damping has a crucial role in the
stability of this system. The Fig. 12 shows the increasing negative linear fluid damping, which results in
decreasing total damping of fluidelastic system, in the case of zero total damping the stability threshold occurs.
The nonlinear cubic fluid damping, which determines the post-stable amplitude, is shown in Fig. 13.

3.3. Decrement method

A method to estimate the damping parameters for lightly damped systems with a weak nonlinearity has
been proposed by Meskell [15]. This section details the main principle of the method and introduces a slight
modification to achieve more accurate results. The modified method is verified using a numerical simulation
initially, before being applied to the experimental data.



ARTICLE IN PRESS

−0.4 −0.2 0 0.2 0.4
−0.8

−0.4

0

0.4

0.8

tube velocity (m/s)

F
D
 (

N
/k

g
)

Fig. 5. Total damping at U ¼ 4m=s including structural and fluidelastic components: —, experimental data; � � �, cubic fitting.
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Fig. 6. Total stiffness at U ¼ 4m=s including structural and fluidelastic components: —, experimental data; � � �, cubic fitting.
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The mass normalized equation of motion of system in free response is

€yþ f Dðy; _yÞ þ O2y ¼ 0, (15)

where O ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
and f D is the mass normalized damping force including both linear and nonlinear damping.

The free response is assumed to be sinusoid with time varying amplitude AðtÞ and natural angular frequency

Od ¼ O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2
p

where D is a damping ratio

yðtÞ ¼ AðtÞ cosðOdtþ fÞ. (16)

If the damping is weak D2
51 (i.e. Od � O) and the change of amplitude during short time period is small (i.e.

_A � 0), then the velocity and acceleration can also be assumed to be sinusoidal.
The mass normalized instantaneous mechanical energy in the system can be written as

eðtÞ ¼ 1
2
O2y2ðtÞ þ 1

2
_y2ðtÞ. (17)
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Fig. 8. Total stiffness at U ¼ 8:5m=s including structural and fluidelastic components: —, experimental data; � � �, cubic fitting.
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Substituting system displacement and velocity into Eq. (17) relates the instantaneous specific energy to the
instantaneous amplitude of vibration

eðtÞ ¼ 1
2
O2A2ðtÞ. (18)

Alternatively, the specific energy can be obtained by considering the energy dissipated by the damping force
f D. The instantaneous energy is simply

eðtÞ ¼ e0ðtÞ � wDðtÞ, (19)

where e0 is the initial energy at t ¼ 0. The specific work done by the damping force is

wDðtÞ ¼

Z t

0

f DðtÞ _yðtÞdt. (20)

Combining Eqs. (18)–(20) yields

A2ðtÞ ¼ A2
0 �

2

O2

Z t

0

f DðtÞ _yðtÞdt, (21)
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where A0 is the amplitude at t ¼ 0. Substituting the system velocity, changing the variable in the integral to
y ¼ Otþ f and evaluating this equation over one period of vibration yields the basic equation for the
decrement method

A2
1 ¼ A2

0 �
2

O3

Z 2p

0

f DðyÞ _yðyÞdy. (22)

In previous section the form of nonlinear damping force of the fluidelastic system has been identified as cubic
from experimental data. Thus, the total damping force including nonlinear and linear part is given by

f D ¼ c _yþ b _y3. (23)

Note that the damping coefficients are already mass normalized. Assuming a constant response amplitude of
Ac, the work done over one period of vibration isZ 2p

0

f DðyÞ _yðyÞdy ¼ cA2
c

Z 2p

0

O2 cos2ðyÞdyþ bA4
c

Z 2p

0

O4 cos4ðyÞdy

¼ cA2
cO

2pþ bA4
cO

4 3p
4
. ð24Þ
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Fig. 12. Mass normalized linear fluid damping.
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Combining this with Eq. (22) yields

A2
1 ¼ A2

0 � l1A2
c � l2A4

c , (25)

where

l1 ¼
2p
O

c, (26)

l2 ¼
3pO
2

b. (27)

In this study it is assumed, that the constant amplitude Ac is simply the average of the initial and final
amplitudes in one period, which should eliminate accumulated errors (compare Meskell [15], where the initial
and final amplitudes were used to yield two sets of parameter estimates)

Ac ¼
1
2
ðA0 þ A1Þ. (28)
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Fig. 13. Mass normalized nonlinear cubic fluid damping.
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Substituting Eq. (28) into Eq. (25) and rearranging yields an equation for a straight line

p ¼ l1 þ l2r, (29)

where

r ¼
A0

2
þ

A1

2

� �2

, (30)

p ¼
ðA2

0 � A2
1Þ

r
. (31)

Note the A0, A1 pairs are known from the response data. Once again, a total least square approach is used for
parameters l1 , l2 estimation since errors are expected in both variables p and r.

A numerical simulation has been performed for same system parameter values given in Table 1 and same the
computational conditions as in Ref. [15]. The procedure has been applied for the displacement response only
as this is consistent with the experimental data. Fig. 14 shows data associated with Eq. (29). An improvement
of results is apparent from Table 2 for linear damping and nonlinear cubic damping, where c̄ and b̄ are
estimated parameters from decrement method and c, b are exact parameters in the simulation.

3.4. Experimental results for decrement method

The displacement free decay responses at each flow velocity were smoothed using an acausal band-pass filter
with zero-phase distortion. This filter has precisely zero phase distortion and minimal magnitude attenuation
in the pass band.

Using this technique the information about system damping is available. As can be seen in Fig. 15 the linear
fluid damping is negative and Fig. 16 shows positive nonlinear cubic fluid damping, which seems to reach a
constant value again within flow velocity range from 3 to 7.5m/s. This effect is hard to explain physically.
However, as will be seen below, the good prediction of overall system behaviour (i.e. LCO amplitude)
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Fig. 15. Mass normalized linear fluidelastic damping.
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supports this trend in the cubic damping parameter. Further study into this problem is required to isolate the
fluid mechanism responsible and is beyond the scope of this study.

The drop in parameter values at the last flow velocity can be attributed to an interaction with acoustic
resonance. The increase in fluidelastic frequency is due to fluidelastic stiffness as shown in Fig. 17 which has
been obtained from averaged steady peak periods. The information about nonlinear fluid stiffness is unknown
using the decrement method. However, as will be demonstrated below, the nonlinear fluid stiffness does not
play an important role in the dynamics of this fluidelastic system.
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Fig. 16. Mass normalized nonlinear cubic fluidelastic damping.
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Fig. 17. Fluidelastic frequency.
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3.5. Prediction of post-stable response

A criterion of good parameter estimates of linear and nonlinear damping from both applied techniques is
the prediction of the stability thresholds and the post-stable behaviour. In post-stable regimes fluidelastic
systems establishes a LCO with constant amplitude at a given flow velocity. The total work during one period
is zero as shown in Ref. [10] is a function of the damping coefficients and fluidelastic frequency only, since all
stiffness forces are conservative. The limit cycle amplitude is expressed as

ALCO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
4

3

cf ðUÞ þ cs

bðUÞO2ðUÞ

s
, (32)

where all parameters have been experimentally determined previously, cf is linear fluid damping coefficient, b
is nonlinear cubic fluid damping coefficient and O is fluidelastic frequency, all as a function of flow velocity U;
cs is structural damping coefficient independent on flow velocity U. Using these identified parameters for
structural damping d ¼ 0:153 the limit cycle amplitudes can be predicted for the system with lower damping
levels d ¼ ½0:093; 0:106; 0:114� assuming the same trends for the fluid coefficients.
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Comparing the predicted response amplitudes, obtained using the identified linear and nonlinear
coefficients, with experimental response amplitudes for the same system damping (Fig. 2) offers a measure
of the accuracy of the identification methods. Table 3 compares the two sets of predictions for the critical
velocity with the directly measured experimental values. Table 4 compares the predicted and experimental rms
response of the system at three levels of damping for a flow velocity of 8m/s.

The rms levels for the system predicted using the analytic signal method (FREEVIB) is shown in Fig. 18.
The estimates of the critical velocity are consistently overestimated (Table 3), implying a systematically low
value of the estimated linear fluid damping. The trend of the post-stable behaviour is in satisfactory agreement
with the experimental data but the amplitudes are a slightly overestimated (Table 4). As the LCO amplitude
depends on the ratio of the linear to the cubic damping and so this implies, that the cubic damping is also
underestimated.
Table 4

Experimental and predicted rms levels at a velocity of 8m/s (mm)

Structural viscous damping, d

0.093 0.106 0.114

Experiment 2.6 2.1 1.8

FREEVIB [14] 3.5 2.1 1.0

Decrement method [15] 2.8 2.2 1.8

Table 3

Experimental and predicted critical velocities (m/s)

Structural viscous damping, d

0.093 0.106 0.114

Experiment 4.0 5.5 6.5

FREEVIB [14] 5.5 6.5 7.0

Decrement method [15] 4.5 5.5 6.0
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Fig. 18. Predicted rms of tube displacement using analytic signal: n, d ¼ 0:093; �, d ¼ 0:106; ,, d ¼ 0:114.
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Fig. 19. Predicted rms of tube displacement using decrement method: n, d ¼ 0:093; �, d ¼ 0:106; ,, d ¼ 0:114.
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The decrement method (Fig. 19) gives better predictions of the critical flow velocities (Table 3), although
there are still slightly overestimated. This implies a superior estimation of the linear fluidelastic damping
compared to FREEVIB. The post-stable amplitudes are also predicted reasonably well (Table 4) and the trend
is in a good agreement to the experimental data.

Thus, it is appears that the decrement method yields superior estimates of the damping parameters, both
linear and nonlinear, for this type of system, although it should be noted that the functional form of the
nonlinearity must be assumed.
4. Conclusions

A sdof fluidelastic system with one degree of freedom has been identified using only a single free
response measurement. The behaviour of a single flexible tube in otherwise rigid array with a pitch ratio
P=d ¼ 1:32 was found to be nonlinear with cubic form in damping and stiffness under the flow conditions.
However, both elements of the damping force (linear and nonlinear) are small compared to either the
inertial of stiffness force. Since many system identification techniques are ultimately based on a force
balance, the weak damping can lead to poor estimates of damping parameters. The use of free response data
eliminates that possibility of errors due to phase distortion and also permits ensemble averaging in the
time domain to improve the signal-to-noise ratio. With this in mind, two different methods which are suited to
this type of situation, have been applied to estimate system parameters and to predict the post-stable
behaviour with stability threshold. The results show that each technique has a specific advantage. The
method using an analytic signal (FREEVIB) can detect the nonlinear behaviour of a system without prior
knowledge of the functional form and subsequently the nonlinear decrement method can be used to achieve
more accurate parameter estimates as verifying by the prediction of global behaviour (i.e. limit cycle
amplitudes). Therefore, it is concluded that the application of the both methods together provides a
powerful tool for parameter estimation of a sdof system, where a weak nonlinear and linear damping play an
important role.
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